RETRO CAROTENOIDS WITH SUBSTITUTED 2,5-OXA-BICYCLOHEPTANE END GROUPS

Kåre Aareskjold^a, Hartmut Kayser^b and Synnøve Liaaen-Jensen^a* ^aOrganic Chemistry Laboratories, Norwegian Institute of Technology, University of Trondheim, N-7034 Trondheim-NTH, Norway ^bAbteilung für Biologie, Universität Ulm, 7900 Ulm, Oberer Eselberg, West Germany

 BF_3 -mediated formation of a 2,5-oxygen bridge from carotenoids with 2-hydroxy β -type end groups accompanied by dehydrogenation and <u>retro</u> shift of the polyene system is reported. The configuration of the $\Delta 6, 6'$ double bonds are established by ¹H NMR.

It has been reported¹ that treatment of β , β -caroten-2-ol (<u>1</u>) and β , β -carotene 2,2'-diol (<u>2</u>) with BF₃-etherate caused dehydrogenation with concomitant <u>retro</u>-rearrangement of the polyene chain. Initially it was assumed that the 2-hydroxy function had been oxidized to provide the corresponding ketones <u>3</u> and <u>4</u>¹, a mechanistically obscure reaction.

During a recent reinvestigation the products were shown to be the 2,5-bicyclic oxides 5 and 6, Scheme 1.

Scheme 1

Treatment of $(2\underline{R})-\beta,\beta$ -caroten-2-ol (<u>1a</u>) ex Trentepohlia iolithus² in several portions (total 6.2 mg) with a 2.5% solution of BF₃-etherate in ethanol-free CHCl₃ (total 16 ml) provided <u>5a</u> as the major product in 20-60% yield. Product <u>5a</u>, available 1.4 mg, exhibited λ_{max} (acetone) 432, <u>456</u> and 483 nm as previously reported¹ and could not be separated chromatographically (TLC, SiO₂, 5% ether in CH₂Cl₂) from the BF₃-product earlier obtained¹ from <u>1</u>.

Similarly treatment of $(2\underline{R}, 2'\underline{R}) - \beta, \beta$ -carotene-2,2'-diol (<u>2a</u>, 1.8 mg) *ex Trentepohlia iolithus*² yielded <u>6a</u> (0.9 mg, 50%). Product <u>6a</u> exhibited identical R_F upon co-chromatography and the same vis. spectrum as the BF_3 -product previous-ly obtained from the diol <u>2</u>¹ with λ_{max} (ether) 418, <u>442</u> and 470 nm.

For comparison of chromophores $6,5'-\underline{retro}-5,6-dihydro-\beta,\beta-carotene-4,4'-diol (9) and <math>6,5'-\underline{retro}-5,6-dihydro-\beta,\beta-carotene-4,4'-dione (8) were prepared from canthaxanthin (7) by <math>\omega,\omega'$ -reduction with Zn-CH₃COOH in dry pyridine³, followed by reduction of the keto groups with LiAlH₄, Scheme 2.

Products <u>8</u> and <u>9</u> were characterized by vis. IR, ¹H NMR and ¹³C NMR spectra. They exhibited λ_{max} (ether) 418, <u>442</u> and 470 nm consistent with their decaene retro chromophore⁴.

Structure <u>6a</u> (Scheme 3) for the BF₃-product of $(2\underline{R}, 2'\underline{R}) - \beta, \beta$ -caroten-2,2'diol (<u>2a</u>) is based on the following evidence: The vis. spectrum supports identical chromophores for <u>6a</u> and the models <u>8</u> and <u>9</u>. The mass spectrum showed <u>m/e</u> 566 (M, consistent with $C_{40}H_{54}O_2$), M-92 and M-106. IR spectra (KBr) of <u>6a</u> (and <u>5a</u>) had v_{max} 3040 (w), 2960, 2930, 2860 (s), 1460 (s), 1320, 1120 (s, C-O stretch), 950 and 970 (s, <u>retro</u>⁵) cm⁻¹. A variable to absent carbonyl absorption at 1735 cm⁻¹ ¹ is ascribed to a contaminant. ¹H NMR data are given in Scheme 3 and Table 1 in comparison with data for 2,5-epoxy-megastigma-6(<u>E</u>), 8(<u>E</u>)-diene (<u>10</u>) and its 6(<u>Z</u>) isomer (<u>11</u>). The ¹³C NMR spectrum showed no signal for C=0 and a δ 86 signal assigned to C-2; the sp² C region was very similar for <u>6a</u> and the models <u>8</u> and <u>9</u>. As previously reported neither <u>6a</u> nor <u>5a</u> gave any reduced products upon treatment with LiAlH₄, consistent with their tetrahydrofurane structures.

Structure <u>5a</u> (Scheme 3) for the BF₃-product of $(2\underline{R})-\beta,\beta$ -caroten-2-ol (<u>1a</u>) follows from the corresponding evidence: The vis. spectrum is consistent with a <u>retro</u> undecaene chromophore, the mass spectrum had diagnostic peaks at <u>m/e</u> 550 (M, consistent with C₄₀H₅₄O), M-92 and M-106, ¹H NMR (Scheme 3, Table 1) and ¹³C NMR and IR as cited above.

By analogy with the previously discussed mechanism for BF_3 -mediated dehydrogenation of carotenoids⁷ the formation of these novel carotenoids is rationalized in Scheme 3.

Regarding the stereochemistry of the $\Delta 6, 6'$ double bonds in the products $\underline{5a}$ and <u>6a</u>, comparison with the ¹H NMR data for relevant <u>retro</u> carotenoids⁸ and for the models <u>10</u> and <u>11</u>⁶, <u>8</u> and <u>9</u> prove $6(\underline{E}), 6'(\underline{E})$ -configuration for <u>6a</u> and $6(\underline{E}), 6'(\underline{C})$ -configuration for <u>5a</u> as given in Scheme 3.

Scheme 3

The 2,5-oxa-bicycloheptane derivatives 5a and 6a are the first synthetically prepared carotenoids with a 2,5-oxygen bridge. Recently a natural carotenoid, eutreptiellanone, with a 3,6-oxygen bridge has been encountered in an algae⁹. These synthetic and natural carotenoids with an oxygen bridge locking the boat conformation represent stable tetrahydrofurane derivatives.

	END GROUP	۲ ح	→ <u>trans</u>	Č.	Č¢*	X LX	Lab	
	\sim			1,1-Dimethyl	5-Methyl	9-Methyl	13-Methyl	Ref.
0 ⁻ но• АсО•			<u>trans=Z</u> <u>cis=E</u>	1,38;1,38 1,25;1,25	2,15 2,31	2,03-1,98	3	8
			<u>trans=Z</u> <u>cis=E</u>	1,44;1,24 1,10;1,24	1,97 2,12	1,97	1,97	8
			<u>trans=Z</u> <u>cis=E</u>	1,44;1,30 1,14?	1,95	1,97	1,97	8
		_	<u>trans=Z</u> <u>cis=E</u>	1,31 1,12	1,92 2,09	1,96	1,97	8
		<u>8</u>	<u>"trans"=Z</u> <u>"cis"=E</u>	1,21 ;1,24	1,36	1,96	1,96	
	Он Он	<u>9</u>	<u>"trans</u> "= <u>Z</u> <u>"cis</u> "= <u>E</u>	1,14	1,23	1,96	1,96	
	X~~	<u>10</u>	<u>"trans"=E</u>	1,28	1,50	1,78	-	
	Š.	<u></u> 5a,6a	<u>"trans"=Z</u> <u>"trans"=E</u> <u>"cis</u> "= <u>Z</u>	1,28	1,54	1,78	1,96	6
	Č¢*		<u>trans=Z</u>	1,31;1,38	1,92	1,96	1,96	

Table 1. ¹H NMR (CDCl₂) signals for the methyl groups of <u>retro</u> compounds.

References

- 1. Kayser, H. Tetrahedron Lett. <u>43</u> (1975) 3743.
- 2. Kjøsen, H., Arpin, N. and Liaaen-Jensen, S. Acta Chem. Scand. 26 (1972) 3053.
- 3. Kuhn, R. and Winterstein, A. Ber. 65 (1932) 646.
- Vetter, W., Englert, G., Rigassi, N. and Schwieter, U. in Isler O. "Carotenoids", Chpt. IV, Birkhäuser, Basel 1971.
- 5. Nicoara, E., Tamas, V., Neamtu, G. and Bodea, C. <u>Ann.</u> <u>697</u> (1966) 201.
- 6. Kaiser, R. and Lamparsky, D. Helv. Chim. Acta 61 (1978) 373.
- 7. Bush, W.V. and Zechmeister, L. J. Am. Chem. Soc. 80 (1958) 2991.
- Andrewes, A.G., Englert, G., Borch, G., Strain, H.H. and Liaaen-Jensen, S. Phytochemistry 18 (1979) 303.
- 9. Fiksdahl, A., Bjørnland, T. and Liaaen-Jensen, S. <u>Abstracts 6th Internat</u>. <u>IUPAC Carotenoid Symp.</u>, Liverpool 1981.

(Received in UK 5 August 1981)